First, set up a limit to properly evaluate the improper integral.
\begin{equation*}
\int_1^{\infty} \frac{1}{x^p} \, dx = \lim_{b \to \infty} \int_1^b x^{-p} \, dx
\end{equation*}
Notice that the antiderivative is different if \(p=1 \) or \(p \neq 1 \text{,}\) so we’ll calculate these cases separately. Assume \(p\neq 1 \text{.}\)
\begin{align*}
\int_1^{\infty} \frac{1}{x^p} \, dx &= \lim_{b \to \infty} \int_1^b x^{-p} \, dx \\
&= \lim_{b \to \infty} \left. \frac{x^{-p+1}}{-p+1} \right|_1^b \\
&= \lim_{b \to \infty} \frac{b^{-p+1}}{-p+1} - \frac{1}{-p+1} \\
&= -\frac{1}{-p+1} + \frac{1}{-p+1} \lim_{b \to \infty} b^{-p+1}
\end{align*}
If \(-p+1 >0 \) (so \(p <1 \)) then this limit diverges which implies that the improper integral diverges.
If \(-p+1 < 0 \) (so \(p > 1 \)) then this limit converges which implies that the improper integral converges.
Now, assume \(p=1 \text{.}\)
\begin{align*}
\int_1^{\infty} \frac{1}{x} \, dx &= \lim_{b \to \infty} \int_1^b \frac{1}{x} \, dx \\
& =\lim_{b \to \infty} \left. \ln |x| \right|_1^b \\
& =\lim_{b \to \infty} \ln|b| - \ln|1|\\
&= \lim_{b \to \infty} \ln |b|
\end{align*}
This limit diverges, so the improper integral also diverges. Therefore \(\int_1^{\infty} \frac{1}{x^p} \ dx \) converges if \(p>1 \) and diverges if \(p\leq 1 \text{.}\)