We’ll need to build all three Taylor series, and then compare them. There’s a brief outline of each construction below.
For \(\sin(y^2)\text{:}\)
\begin{align*}
\sin(x)\amp=x-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!} + \frac{x^9}{9!} - \cdots \\
\sin(y^2) \amp=y^2 - \frac{y^6}{3!} +\frac{x^{10}}{5!} - \frac{x^{14}}{7!} + \frac{x^{18}}{9!}
\end{align*}
For \(1-\cos(y)\text{:}\)
\begin{align*}
\cos(y)\amp=1-\frac{y^2}{2!}+\frac{y^4}{4!}-\frac{y^6}{6!} +\frac{y^8}{8!} - \cdots \\
1-\cos(y) \amp= \frac{y^2}{2!} - \frac{y^4}{4!} + \frac{y^6}{6!} - \frac{y^8}{8!} + \cdots
\end{align*}
For \(\ln(1+y^2)\)
\begin{align*}
\ln(1+t) \amp= t-\frac{t^2}{2}+\frac{t^3}{3}-\frac{t^4}{4} + \frac{t^5}{5} - \cdots \\
\ln(1+y^2)\amp= y^2 - \frac{y^4}{2}+\frac{y^6}{3}-\frac{y^8}{4} + \frac{y^{10}}{5} - \cdots
\end{align*}
Now, let’s use, say, the degree six taylor polynomials as an estimate, and compare the three series. For values of \(y\) near 0, we have
\begin{align*}
\sin(y^2) \amp\approx y^2 - \frac{y^6}{3!} \\
1-\cos(y) \amp\approx \frac{y^2}{2!} - \frac{y^4}{4!} + \frac{y^6}{6!}\\
\ln(1+y^2) \amp\approx y^2 - \frac{y^4}{2} + \frac{y^6}{3}
\end{align*}
We can compare term-by-term and decide which is smaller, or we can plug in a value near 0 to all three approximations; say, \(y=0.5\)
\begin{align*}
\sin((0.5)^2) \amp \approx (0.5)^2 - \frac{(0.5)^6}{3!} \approx 0.2474 \\
1-\cos(0.5) \amp\approx \frac{(0.5)^2}{2!} - \frac{(0.5)^4}{4!} + \frac{(0.5)^6}{6!} \approx 0.1224\\
\ln(1+(0.5)^2) \amp\approx (0.5)^2 - \frac{(0.5)^4}{2} + \frac{(0.5)^6}{3} \approx 0.2234
\end{align*}
Thus, the order is \(1-\cos(y) \leq \ln(1+y^2)\leq \sin(y^2) \)