Proceeding as above, we find that
\begin{align*}
f(x,y) \amp= f(x_0,y_0) + \int_{C_1}\vF\cdot d\vr +
\int_{L_x} \vF\cdot d\vr + \int_{L_y}\vF\cdot d\vr\\
\amp = f(x_0,y_0) + \int_{C_1}\vF\cdot d\vr + \int_a^x
F_1(t,b)\, dt + \int_b^y F_2(x,t)\, dt\text{.}
\end{align*}
Only the last term of this expression depends on \(y\text{,}\) so the first three terms vanish when calculating \(f_y(x,y)\text{.}\) By the Second Fundamental Theorem of Calculus,
\begin{equation*}
\frac{\partial}{\partial y}\int_b^y F_2(x,t)\,
dt = F_2(x,y)\text{.}
\end{equation*}
Therefore, \(f_y(x,y) = F_2(x,y)\text{.}\)