Calculating some constants in the component and projection we get:
\begin{equation*}
\vu\cdot\vv
= 8-48
= -40,
\end{equation*}
\begin{equation*}
\vv\cdot\vv
= 16+64
= 80,
\end{equation*}
and
\begin{equation*}
|\vv|
= \sqrt{80}
\end{equation*}
so
\begin{align*}
\comp_{\vv} \vu
\amp = \frac{\vu\cdot\vv}{|\vv|}\\
\amp = \frac{-40}{\sqrt{80}}\\
\amp = -2\sqrt{5}
\end{align*}
and
\begin{align*}
\proj_{\vv} \vu
\amp = \frac{\vu\cdot\vv}{\vv\cdot \vv}\vv\\
\amp = \frac{-40}{80}\langle 4, -8\rangle\\
\amp = -\frac{1}{2}\langle 4, -8\rangle\\
\amp = \langle -2, 4\rangle
\end{align*}
and
\begin{align*}
\proj_{\perp \vv} \vu
\amp = \vu - \proj_{\vv} \vu\\
\amp = \langle 2, 6 \rangle - \langle -2, 4\rangle\\
\amp = \langle 4, 2\rangle.
\end{align*}
Then
\begin{align*}
\vu = \langle 2, 6 \rangle
\amp = \langle -2, 4\rangle + \langle 4, 2 \rangle
\end{align*}
where \(\langle -2, 4\rangle\) is parallel to \(\vv\) and \(\langle 4, 2 \rangle\) is perpendicular to \(\vv\text{.}\)