Notice that the flux out of the top or bottom of the truncated cone is 0 because \(\mathbf{F} \cdot \pm \mathbf{k} = 0\text{.}\) So we only need to worry about the outer face.
The cone is given in polar coordinates by the equation \(r = 2 - z\text{.}\) We parametrize the outer face using cylindrical coordinates:
\begin{equation*}
\mathbf{r}(\theta,z) = \langle (2 - z)\cos\theta, (2-z)\sin\theta, z \rangle
\end{equation*}
Exercise. Show that
\begin{equation*}
\mathbf{r}_\theta \times \mathbf{r}_z =
(2-z)\langle \cos\theta,\sin\theta,1 \rangle
\end{equation*}
Plugging everything in, we have
\begin{align*}
\mathbf{F}(\mathbf{r}(\theta,z)) \amp = \frac12\langle (2-z) \cos\theta,(2-z)\sin\theta,0 \rangle
\cdot (2-z)\langle \cos\theta,\sin\theta,1 \rangle\\
\amp = \frac12 ((2-z)^2).
\end{align*}
Now we can compute the flux of \(\mathbf{F}\) through the outer face, which by the Divergence Theorem is the volume:
\begin{equation*}
\text{flux} = \int\limits_{\theta = 0}^{2\pi}
\int\limits_{z = 0}^1
\frac12 (2 - z)^2 \,dzd\theta
= \cdots = \frac{7\pi}{3}.
\end{equation*}