We can see that \((2,1)\) is on the contour line labeled 3, so \(f(2,1)=3\text{.}\) We estimate the partial derivatives using difference quotients:
\begin{align*}
f_x(2,1)
\amp\approx \frac{f(1.4, 1)-f(2, 1)}{-.6}\\
\amp\approx \frac{4-3}{-.6}\\
\amp= -\frac{5}{3}
\end{align*}
and
\begin{align*}
f_y(2,1)
\amp\approx \frac{f(2, 1.75)-f(2, 1)}{0.75}\\
\amp\approx \frac{4-3}{.75}\\
\amp= \frac{4}{3}.
\end{align*}
Our linearization is then
\begin{align*}
L(x,y)
\amp = f(2,1) + f_x(2,1)(x - 2) + f_y(2,1)(y-1)\\
\amp = 3 -\frac{5}{3}(x - 2) + \frac{4}{3}(y-1).
\end{align*}
We can use this to estimate
\begin{align*}
f(2.2,1)
\amp \approx L (2.2,1)\\
\amp = 3 -\frac{5}{3}(2.2 - 2) + \frac{4}{3}(1-1)\\
\amp \approx 2.667,
\end{align*}
\begin{align*}
f(2,0.8)
\amp \approx L (2,0.8)\\
\amp = 3 -\frac{5}{3}(2 - 2) + \frac{4}{3}(0.8-1)\\
\amp \approx 2.733,
\end{align*}
and
\begin{align*}
f(2.2,0.8)
\amp \approx L (2.2,0.8)\\
\amp = 3 -\frac{5}{3}(2.2 - 2) + \frac{4}{3}(0.8-1)\\
\amp = 2.4.
\end{align*}