Evaluate the following integral using \(u \)-substitution.
\begin{equation*}
\int \left(x^3+5\right)^8(3x^2)dx
\end{equation*}
Step 1: Identify an "inside" function and set \(u\) equal to that inside function. In this case, a possible "inside" function is
\begin{equation*}
u=x^3+5.
\end{equation*}
Step 2: Take the derivative of inside function, and then write in the form \(du=g'(x)dx\text{:}\)
\begin{equation*}
du=3x^2 dx.
\end{equation*}
Step 3: Replace the inside function with \(u\) and replace \(g'(x)dx\) with \(du\text{:}\)
\begin{equation*}
\int (\overbrace{x^3+5}^{u})^8\overbrace{(3x^2)dx}^{du}=\int (u)^8du.
\end{equation*}
Step 4: Integrate with variable \(u\text{:}\)
\begin{equation*}
\int u^8 du=\frac{u^9}{9}+C.
\end{equation*}
Step 5: Replace \(u\) with the function chosen in the Step 1:
\begin{equation*}
\int \left(x^3+5\right)^83x^2dx=\int u^8 du=\frac{u^9}{9}+C=\frac{(x^3+5)^9}{9}+C
\end{equation*}
Step 6: Check your work by taking the derivative using the Chain Rule:
\begin{equation*}
\frac{d}{dx}\left[\frac{(x^3+5)^9}{9}+C\right]=9\frac{(x^3+5)^8}{9}(3x^2)=(x^3+5)^8(3x^2).
\end{equation*}