Consider the system
\begin{align*}
x' & = x + 3y\\
y' & = x - y.
\end{align*}
We can rewrite this system in matrix form as \({\mathbf x}' = A {\mathbf x}\text{,}\) where
\begin{equation*}
A =
\begin{pmatrix}
1 & 3 \\
1 & -1
\end{pmatrix}.
\end{equation*}
The matrix \(A\) has an eigenvector \({\mathbf u} = (3, 1)\) with associated eigenvalue \(\lambda = 2\text{,}\) since
\begin{equation*}
A \mathbf u =
\begin{pmatrix}
1 & 3 \\
1 & -1
\end{pmatrix}
\begin{pmatrix}
3 \\ 1
\end{pmatrix}
=
\begin{pmatrix}
6 \\ 2
\end{pmatrix}
=
2
\begin{pmatrix}
3\\1
\end{pmatrix}
= \lambda \mathbf u.
\end{equation*}
Similarly, \({\mathbf v} = (1, -1)\) is an eigenvector for \(A\) with associated eigenvalue \(\mu = -2\text{.}\) Thus, we have two solutions for our system: the equilibrium solution at the origin, the solution
\begin{equation*}
{\mathbf x}_1(t) = e^{2t} \begin{pmatrix} 3 \\ 1 \end{pmatrix},
\end{equation*}
and the solution
\begin{equation*}
{\mathbf x}_2(t) = e^{-2t} \begin{pmatrix} 1 \\ -1 \end{pmatrix}.
\end{equation*}
Since
\begin{align*}
\frac{d}{dt} (c_1 {\mathbf x}_1(t) + c_2 {\mathbf x}_2(t)) & = c_1\frac{d}{dt} {\mathbf x}_1(t) + c_2 \frac{d}{dt} {\mathbf x}_2(t)\\
& = c_1 A {\mathbf x}_1(t) + c_2 A {\mathbf x}_2(t)\\
& = A( c_1 {\mathbf x}_1(t) + c_2 {\mathbf x}_2(t)),
\end{align*}
any linear combination of solutions to a linear system is also a solution. Thus, a general solution to our system is
\begin{equation*}
\mathbf x(t) = c_1 e^{2t} \begin{pmatrix} 3 \\ 1 \end{pmatrix} + c_2 e^{-2t} \begin{pmatrix} 1 \\ -1 \end{pmatrix}
\end{equation*}
or
\begin{align*}
x(t) & = 3 c_1 e^{2t} + c_2 e^{-2t}\\
y(t) & = c_1 e^{2t} - c_2 e^{-2t}.
\end{align*}
If we are given initial conditions, say \(x(0) = 0\) and \(y(0) = 1\text{,}\) then we can determine \(c_1\) and \(c_2\) by solving the linear system of equations
\begin{align*}
3 c_1 + c_2 & = 0\\
c_1 - c_2 & = 1
\end{align*}
to get \(c_1 = 1/4\) and \(c_2 = -3/4\text{.}\) Thus, the solution to our initial value problem is
\begin{align*}
x(t) & = \frac{3}{4} e^{2t} - \frac{3}{4} e^{-2t}\\
y(t) & = \frac{1}{4} e^{2t} + \frac{3}{4} e^{-2t}.
\end{align*}