Suppose that we wish to find the eigenvalues and associated eigenvectors of
\begin{equation*}
A =
\begin{pmatrix}
1 & 2 \\
4 & 3
\end{pmatrix}.
\end{equation*}
To find the eigenvalues and eigenvectors for \(A\text{,}\) we must solve the equation
\begin{equation*}
A
\begin{pmatrix}
x \\ y
\end{pmatrix}
=
\lambda
\begin{pmatrix}
x \\ y
\end{pmatrix}.
\end{equation*}
If we let \(I\) denote the \(2 \times 2\) identity matrix,
\begin{equation*}
I =
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix},
\end{equation*}
we can rewrite this equation in the form
\begin{equation}
(A - \lambda I)
\begin{pmatrix}
x \\ y
\end{pmatrix}
=
\begin{pmatrix}
0 \\ 0
\end{pmatrix}.\tag{5.1.2}
\end{equation}
We know that \(A - \lambda I\) is a \(2 \times 2\) matrix and that this system will only have nonzero solutions if \(\det(A - \lambda I) = 0\text{.}\) In our example,
\begin{align*}
\det(A - \lambda I)
& =
\det\begin{pmatrix}
1 - \lambda & 2 \\
4 & 3 - \lambda
\end{pmatrix} \\
& = (1 - \lambda) (3 - \lambda ) - 8\\
& = \lambda^2 - 4\lambda - 5\\
& = (\lambda - 5)(\lambda +1 ).
\end{align*}
Thus, \(\lambda = 5\) or \(-1\text{.}\)
To see this from a different perspective, we will rewrite equation
(5.1.2) as
\begin{align*}
x + 2 y & = \lambda x\\
4 x + 3 y & = \lambda y.
\end{align*}
This system is equivalent to
\begin{align*}
(1 - \lambda) x + 2 y & = 0\\
4 x + (3 - \lambda) y & = 0
\end{align*}
which can be reduced to
\begin{align*}
(1 - \lambda) x + 2 y & = 0\\
(\lambda^2 - 4\lambda - 5) y & = 0.
\end{align*}
Therefore, either \(\lambda = 5\) or \(\lambda = -1\) to obtain a nonzero solution.
If \(\lambda = 5\text{,}\) the first equation in the system becomes \(-2x + y = 0\text{,}\) and the eigenvectors corresponding to this eigenvalue are the nonzero solutions of this equation. That is, a vector must be a nonzero multiple of \((1, 2)\) to be an eigenvector of \(A\) corresponding to \(\lambda = 5\text{.}\)
If \(\lambda = -1\text{,}\) then the corresponding eigenvectors are the nonzero multiples of \((1, -1)\text{.}\)